Kumaraswamy-Half-Cauchy Distribution: Characterizations and Related Results
نویسندگان
چکیده
منابع مشابه
The Beta - Half - Cauchy Distribution
On the basis of the half-Cauchy distribution, we propose the called beta-half-Cauchy distribution for modeling lifetime data. Various explicit expressions for its moments, generating and quantile functions, mean deviations, and density function of the order statistics and their moments are provided. The parameters of the new model are estimated by maximum likelihood, and the observed informatio...
متن کاملThe Kumaraswamy-geometric distribution
In this paper, the Kumaraswamy-geometric distribution, which is a member of the T -geometric family of discrete distributions is defined and studied. Some properties of the distribution such as moments, probability generating function, hazard and quantile functions are studied. The method of maximum likelihood estimation is proposed for estimating the model parameters. Two real data sets are us...
متن کاملInference on the Kumaraswamy distribution
Many lifetime distribution models have successfully served as population models for risk analysis and reliability mechanisms. The Kumaraswamy distribution is one of these distributions which is particularly useful to many natural phenomena whose outcomes have lower and upper bounds or bounded outcomes in the biomedical and epidemiological research. This paper studies point estimation and interv...
متن کاملInference on the Log-Exponentiated Kumaraswamy Distribution
In this paper, the log-exponentiated Kumaraswamy (LEK) distribution is introduced and studied as a survival model of unemployment, its survived function has the interesting property that it can be decreasing depending on the shape parameters. The method of maximum likelihood is applied for estimating the model parameters, survival and hazard rate functions. Stratification is used to reduce hete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Statistics and Probability
سال: 2015
ISSN: 1927-7040,1927-7032
DOI: 10.5539/ijsp.v4n3p94